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A short return to simple AH-algebras with real rank zero

Huaxin Lin

Abstract

Let A be a unital simple AH-algebra with stable rank one and real rank zero such that
kx = 0 for all x ∈ kerρA, the subgroup of infinitesmal elements in K0(A), and for the same
integer k ≥ 1. We show that A has tracial rank zero and is isomorphic to a unital simple
AH-algebra with no dimension growth.

1 Introduction

One of the most successful aspects of operator algebras is the classification of simple separa-
ble amenable C∗-algebras, or otherwise known as the Elliott program. The program started
with the classification of unital simple AT-algebras with real rank zero up to isomorphisms by
their ordered K-theory (with the scale) by G. A. Elliott [4] which was preceded by Elliott’s
classification of AF-algebras ([3]) some fifteen years earlier. It was followed immediately by a
number of earlier results. Then, Elliott and Gong ([5]) made a classification of AH-algebras
with slow dimension growth and real rank zero by their scaled ordered K-theory. While the
earlier results concentrated in the cases of real rank zero, attention later shifted to the case that
C∗-algebras are not assumed to have real rank zero. One of the highlights of the program is the
classification (up to isomorphisms) of unital simple AH-algebras with no dimension growth (see
[6]). These are C∗-algebras whose real rank may not be zero (in fact these C∗-algebras have
real rank one). However, the Elliott invariant this time involves not only the ordered K-groups
but also tracial information. Just as one thought a complete classification for simple unital
AH-algebras was possible, J. Villadsen provided examples of unital simple AH-algebras whose
stable rank may be greater than one and examples of unital simple AH-algebras with stable
rank one whose K0-group may have perforation ([10] and [11]). It should be noted that unital
simple AH-algebras with slow dimension growth have stable rank one and have weakly unper-
forated K0-groups. On the other hand, it was proved in [7] that a unital simple AH-algebra
with stable rank one, real rank zero and with weakly unperforated K0-groups has tracial rank
zero and therefore it is isomorphic to a unital simple AH-algebra with no dimension growth and
with real rank zero. At that point, one might think the next goal would be the classification of
unital simple AH-algebras of stable rank one and with weakly unperforated K0-groups by their
orderd K-groups and tracial information. However, A. Toms provided ([9]) an example of unital
simple AH-algebra with stable rank one and with weakly unperforated K0-group which is not
isomorphic to a unital simple AH-algebra with slow dimension growth and with the same Elliott
invariant.

The real rank of these AH-algebras are greater than zero. The purpose of this note is to
show that, when a unital simple AH-algebra has real rank zero, then it is more likely classifiable
by its Elliott invariant. Toms’s first example is an inductive limit of homogeneous C∗-algebras
whose spectra are contractive finite CW complexes. As we will show in this short note, this
example cannot be made so that it has real rank zero. More precisely, we observe that a unital
simple AH-algebra with real rank zero which is an inductive limit of homogeneous C∗-algebras
whose spectra are contractive finite CW complexes is in fact a unital simple AH-algebra with
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tracial rank zero. In particular, it is classifable and isomorphic to a unital simple AH-algebra
with no dimension growth. Using our earlier result in [7], we further show that if A is a unital
simple AH-algebra with stable rank one and real rank zero so that the subgroup of infinitesmal
elements of K0(A) is a finite group (or zero), then A is isomorphic to a unital simple AH-algebra
with no dimension growth and therefore it is classifiable by the Elliott invariant. We actually
prove a slightly more general result.

Acknowledgements: This work was done in the summer 2011 when the author was in East
China Normal University. It supported by East China Normal University and the Changjiang
Lectureship there. This work was also supported by a grant from NSF.

2 The cases without torsion

Let A be a unital stably finite C∗-algebra. Denote by T (A) the tracial state space of A. If
τ ∈ T (A), we will also use τ for the trace τ ⊗ Tr on Mm(A), where Tr is the standard trace on
Mm, where m ≥ 1 is an integer. Let ρA : K0(A) → Aff(T (A)) be the positive homomorphism
defined by ρA([p])(τ) = τ(p) for all projections in Mm(A), m = 1, 2, ....

Lemma 2.1. Let A = limn→∞(An, ϕn) be a unital C∗-algebra, where An is a unital C∗-
subalgebra and ϕn : An → An+1 is a unital homomorphism. Suppose that p, q ∈ A are two
non-zero projections and there is an integer K ≥ 1 such that

Kτ(q) < τ(p) for all τ ∈ T (A).

Then, there exist an integer n(1) ≥ 1, two projections p′, q′ ∈ An(1) and an integer m0 ≥ n(1)
such that ϕn(1),∞(p′) is unitarily equivalent to p, ϕn(1),∞(q′) is unitarily equivalent to q and

Kt(ϕn(1),m(q′)) < t(ϕn(1),m(p′))

for all tracial states t of Am with m ≥ m0.

Proof. Put Bn = ϕn,∞(An), n = 1, 2, .... Without loss of generality, we may assume that there
are p′, q′ ∈ An(1) for some n(1) such that

ϕn(1),∞(p′) = p and ϕn(1),∞(q′) = q.

Suppose that, for some increasing subsequence {n(k)},

Ktk(ϕn(1),n(k)(q
′)) ≥ tk(ϕ(n(1),n(k)(p

′)) (e 2.1)

for some tracial states tk of An(k). By a result of Choi and Effros ([2]), there exists a contractive
completely positive linear map Lk : Bk → Ak such that ϕk,∞ ◦ Lk = idBk

, k = 1, 2, .... Note
that, if m ≥ n(1),

lim
k→∞

‖ϕm,n(k)[Lm(ϕn(1),∞(b)) − ϕn(1),m(b)]‖ = 0 (e 2.2)

for all b ∈ An(1). In particular, it holds for m = n(2).
Define s′k : Bn(k) → C by s′k(b) = tk ◦ Ln(k)(b) for all b ∈ Bn(k), k = 1, 2, .... Then s′k is a

state on Bn(k). Let sk be a state of A which extends s′k. Let τ be a weak limit of {tk}. It follows
from (e 2.2) that τ is a tracial state on Bn(1). One would have, by (e 2.1),

Kτ(q) ≥ τ(p).

A contradiction.
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Definition 2.2. Recall that a unital C∗-algebra A is said to be AH-algebra ifA = limn→∞(An, ϕn),
where An = PnMr(n)(C(Xn))Pn, Xn is a finite CW complex, r(n) ≥ 1 is an integer and
Pn ∈ Mr(n)(C(Xn)) is a projection. We also assume that ϕn : An → An+1 is unital. In
what follows, we call Xn the spectrum of An.

Theorem 2.3. Let A = limn→∞(An, ϕn) be a unital simple AH-algebra such that the spectrum of
An is a finite disjoint union of contractive spaces and ϕn : An → An+1 is a unital homomorphism.
Suppose also that A has the real rank zero. Then A has tracial rank zero.

Proof. Let p, q ∈ A be two projections such that

τ(q) < τ(p)

for all τ ∈ T (A). We will show that q . p.
We assume that An = Mr(n)(C(Xn)), where Xn is a disjoint union of contractive spaces. We

may also assume that there are two projections p′, q′ ∈ An for some n ≥ 1 such that ϕn,∞(p′) = p
and ϕn,∞(q′) = q. Moreover, by 2.1, we may assume that

t(q′) < t(p′)

for all tracial states t of An. Since Xn is a disjoint union of contractive spaces, all projections
are trivial. Therefore in An, q

′ . p′. It follows that q . p. This implies that K0(A) is weakly
unperforated.

We will show that projections in A have cancellation property. Suppose that p, q ∈ A and p
and q are equivalent. As above, there are p′, q′ ∈ An such that ϕn,∞(p′) = p and ϕn,∞(q′) = q.
Moreover, we may assume that p′ and q′ are equivalent. So in An, 1 − p′ and 1 − q′ have the
same rank at each point. Note that, since Xn is a disjoint union of contractive spaces, 1 − p′

and 1− q′ are trivial projections. It follows that 1− p′ and 1− q′ are equivalent. It follows that
1− p and 1− q are equivalent in A.

Since A is also assumed to have real rank zero, by (the proof of) part (3) of III.2.4 of [1], A
has stable rank one. It follows from [7] that A has tracial rank zero.

Corollary 2.4. Let A = limn→∞(An, ϕn) be a unital simple AH-algebra such that kerρAn
= {0}.

Suppose that A has real rank zero and stable rank one. Then A has tracial rank zero and is
isomorphic to a unital simple AH-algebra with no dimension growth.

Proof. The proof is the same as that of 2.3. Note that since kerρAn
= {0}, two projections p, q

in Mm(An) with the same rank must give the same element in K0(An).

Lemma 2.5. Let A be a unital AH-algebra and x ∈ ρA(K0(A)) such that x > 0. Then, there is
a projection e ∈ Mm(A) for some integer m ≥ 1 such that ρA([e]) = x.

Proof. Note that Mm(A) is also a unital AH-algebra for any integer m ≥ 1. We may assume
that there are two projections p, q ∈ A such that

ρ([p]− [q]) = x.

We write A = limn→∞(An, ϕn), where An = PnMr(n)(C(Xn))Pn, Xn is a finite CW complex,
and r(n) ≥ 1 is an integer and Pn ∈ Mr(n)(C(Xn)) is a projection. We may assume that there
is an integer n ≥ 1 and projections p′, q′ ∈ An such that ϕn,∞(p′) = p and ϕn,∞(q′) = q. By 2.1,
we may also assume that

t(q′) < t(p′) (e 2.3)
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for all tracial states t of An. There is an integer K(n) ≥ 1 and there are trivial projections
p0, q0 ∈ MK(n)(An) such that p0 has the same rank at each point of X as that of p′, and q0 has
the same rank at each point of X as that of q′. Therefore

t(p0) = t(p′) and t(q0) = t(q′) (e 2.4)

for all tracial states t of An. It follows that

τ(ϕn,∞(p0)) = τ(p) and τ(ϕn,∞(q0)) = τ(q) (e 2.5)

for all τ ∈ T (A). On the other hand, by (e 2.3) and (e 2.4), since both p0 and q0 are trivial, there
is a partial isometry v0 ∈ An such that

v∗0v0 = q0 and v0v
∗

0 ≤ p0.

Let v = ϕn,∞(v0) and let e = p0−vv∗. Then e ∈ Mm(A) is a non-zero projection and, by (e 2.5),

ρA([e]) = x.

From the above and combining the result in [7], one has the following corollary:

Corollary 2.6. Let A be a unital simple AH-algebra with real rank zero and stable rank one.
Suppose that kerρA = {0}. Then A has tracial rank zero.

Note that, 2.6 is not a generalization of 2.4. In fact that a simple AF-algebra may have
non-zero infinitesmal elements in its K0-group.

We will prove a much more general result that will allow non-zero kerρA.

3 The case that ρA(K0(A)) is torsion

Lemma 3.1. Let A be a unital simple AH-algebra with stable rank one and with real rank zero.
Let K ≥ 1 be an integer. Suppose that for any x ∈ kerρA, Kx = 0. Suppose that p, q ∈ Mm(A)
are two projections such that (K + 2)τ(q) < τ(p) for all τ ∈ T (A). Then

[q] ≤ [p].

Proof. Since A has real rank zero, by a result of S. Zhang ([12], see also 9.4 of [8]), there
exist mutually orthogonal projections e1, e2, ..., eK+1 ∈ pAp such that ei is equivalent to e1
for i = 1, 2, ...,K, eK+1 . e1 and p =

∑K+1
i=1 ei. Write A = limn→∞(An, ϕn), where An =

PnMr(n)(C(X))Pn, X is a finite CW complex, r(n) ≥ 1 is an integer and Pn ∈ Mr(n)(C(X)) is
a projection. Without loss of generality, we may assume that there are projections

p′, q′, e′1, e
′

2, ..., e
′

K+1 ∈ Mm(An)

such that ϕn,∞(p′) = p, ϕn,∞(q′) = q, ϕn,∞(e′i) = ei, i = 1, 2, ...,K + 1. We may also assume
that e′i ≤ p′, i = 1, 2, ...,K + 1, e′1, e

′

2, ..., e
′

K+1 are mutually orthogonal, e′i is equivalent to e′1 in

Mm(An), i = 1, 2, ...,K, e′K+1 . e′1 in Mm(An) and
∑K+1

i=1 e′i = p′. Moreover, by 2.1, we may
also assume that

(K + 2)t(q′) < t(p′) ≤ (K + 1)t(e′1)

for all tracial states t of An. Note also, we have

(K + 1)t(q′) < Kt(e′1) (e 3.6)
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for all tracial states t of An.
There are trivial projections q′′, e′′1 ∈ MR(An) for some R ≥ 1 such that

t(q′′) = t(q′) and t(e′′1) = t(e′1)

for all tracial states t ∈ T (An). Let q̄, ē ∈ MR(A) such that ϕn,∞(q′′) = q̄ and ϕn,∞(e′′1) = ē. It
follows that

τ(q̄) = τ(q) and τ(ē) = τ(e1)

for all τ ∈ T (A). Therefore

[q̄]− [q] and [ē]− [e1] are in ker ρA.

It follows from the assumption that

K[q] = K[q̄] and K[ē] = K[e1]. (e 3.7)

On the other hand, by (e 3.6), since both q′′ and e′′1 are trivial,

q′′ . e′′1 . (e 3.8)

By (e 3.7) and (e 3.8),

K[q] = K[q̄] ≤ K[e1] ≤ p. (e 3.9)

Since A also has stable rank one,

q . e1 + e2 + · · · eK ≤ p. (e 3.10)

The following theorem was proved in [7].

Theorem 3.2. Let A be a unital simple AH-algebra with stable rank one and real rank zero.
Then, for any ǫ > 0, σ > 0 and any finite subset F ⊂ A, there exists a non-zero projection p ∈ A
and a finite dimensional C∗-subalgebra B ⊂ A with 1B = p such that

‖px− xp‖ < ǫ for all x ∈ F , (e 3.11)

dist(pxp,B) < ǫ for all x ∈ F and (e 3.12)

τ(1− p) < σ for all τ ∈ T (A). (e 3.13)

Corollary 3.3. Let A be a unital simple AH-algebra with stable rank one and real rank zero.
Let e1, e2 ∈ A be two projections such that

τ(e1) > τ(e2) for all τ ∈ T (A). (e 3.14)

Then, for any ǫ > 0, σ > 0 and any finite subset F ⊂ A, there exists a non-zero projection p ∈ A
and a finite dimensional C∗-subalgebra B ⊂ A with 1B = p such that

‖px− xp‖ < ǫ for all x ∈ F , (e 3.15)

dist(pxp,B) < ǫ for all x ∈ F and (e 3.16)

τ(1− p) < σ for all τ ∈ T (A). (e 3.17)

Moreover, there are projections ej,0 ∈ (1− p)A(1 − p) and ej,1 ∈ B, j = 1, 2, such that

‖ej,0 + ej,1 − ej‖ < min{1/2, ǫ}, j = 1, 2, (e 3.18)

t(e1,1) > t(e2,1) for all tracial states of B and (e 3.19)

τ(e1,0) > τ(e2,0) for all τ ∈ T (A). (e 3.20)
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Proof. Note that A is separable. Let ǫ > 0, σ > 0 and let F ⊂ A be a finite subset. Let
{x1, x2, ..., } be a dense subset of A. Let Fn = F ∪ {e1, e2} ∪ {x1, x2, ..., xn} and let ǫn = ǫ/2n

and σn = σ/2n, n = 1, 2, .... By 3.2, there exists a sequence of projections pn ∈ A and finite
dimensional C∗-subalgebras Bn ⊂ A with 1Bn

= pn such that

‖pnx− xpn‖ < ǫ/2n for all x ∈ Fn, (e 3.21)

dist(pnxpn, Bn) < ǫ/2n for all x ∈ Fn and τ(1− pn) < σ/2n (e 3.22)

n = 1, 2, .... For all sufficiently large n, there are projections e(j,1,n) ∈ Bn and e(j,0,n) ∈ (1 −
pn)A(1− pn) such that

‖e(j,1,n) + e(j,0,n) − ej‖ < ǫ/2n−2, (e 3.23)

j = 1, 2 and n = 1, 2, .... We also have

lim
n→∞

‖pnejpn − e(j,1,n)‖ = 0, j = 1, 2. (e 3.24)

Suppose that, for a subsequence {nk},

tk(e
(2,1,nk)) ≤ tk(e

(1,1,nk)) (e 3.25)

for some tracial state tk of Bnk
. Let s′k : pAp → C be a state which extends tk. Define sk : A → C

by sk(a) = s′k(pap) for all a ∈ A. Then sk is a state on A. Let t be a weak limit of {sk}. One
checks that t is a tracial state on A. Then (e 3.25) and (e 3.24) imply that

t(e1) ≤ t(e2)

which contradicts with (e 3.14).
It follows that, for all sufficiently large n,

t(e(2,1,n)) > t(e(1,1,n)) for all t ∈ T (Bn). (e 3.26)

The lemma follows.

Theorem 3.4. Let A be a unital simple AH-algebra with stable rank one and real rank zero.
Suppose that there is an integer K ≥ 1 such that, for any x ∈ kerρA, Kx = 0. Then A has
tracial rank zero. Moreover, A is isomorphic to a unital simple AH-algebra with slow dimension
growth.

Proof. We may assume that A is infinite dimensional. We will show that K0(A) is weakly
unperforated. It then follows from [7] that A has tracial rank zero.

It suffices to show the following: If p, q ∈ Mm(A) are two non-zero projections for some
integer m ≥ 1 and

τ(p) > τ(q) for all τ ∈ T (A),

then q . p.
To prove this, we note that Mm(A) is also a unital simple AH-algebra with stable rank one,

real rank zero and K0(Mm(A)) = K0(A), so, to simplify the notation, without loss of generality,
we may assume that p, q ∈ A.

Let
d1 = inf{τ(p)− τ(q) : τ ∈ T (A)}.
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Since A is simple, d1 > 0. Since A is an infinite dimensional simple C∗-algebra with real rank
zero, pAp is also an infinite dimensional simple C∗-algebra with real rank zero. It follows that
there is a non-zero projection e ∈ pAp such that

τ(e) < d1/2 for all τ ∈ T (A). (e 3.27)

Put

d2 = inf{τ(e) : τ ∈ T (A)}. (e 3.28)

Note that d2 > 0. Put p0 = p− e. Then

τ(p0) > τ(q) for all τ ∈ T (A). (e 3.29)

Let
F = {p, q, e, p0}.

It follows from 3.2 and 3.3 that, there exists a projection E ∈ A and a finite dimensional
C∗-subalgebra B with 1B = E such that

‖Ex− xE‖ <
d2
64K

for all x ∈ F ; (e 3.30)

dist(ExE,B) <
min{d2, 1}

64K
for all x ∈ F and (e 3.31)

τ(1− E) <
d2
64K

for all τ ∈ T (A). (e 3.32)

Moreover, there are projections p0,1, q1 ∈ B and p0,0, q0 ∈ (1− E)A(1 − E) such that

‖p0,1 + p0,0 − p0‖ <
1

16K
, (e 3.33)

‖q1 + q0 − q‖ <
1

16K
and (e 3.34)

t(q1) < t(p0,1) (e 3.35)

for all tracial state t of B. It follows that, in B,

q1 . p0,1. (e 3.36)

We compute, by (e 3.28) and (e 3.32) that

(K + 2)τ(q0) < τ(e) for all τ ∈ T (A). (e 3.37)

It follows from 3.1 that

q0 . e. (e 3.38)

Combining (e 3.36) and (e 3.38), we obtain that

q1 + q0 . p0,1 + e.

But, by (e 3.33) and (e 3.34),

[q1 + q0] = [q] and p0,1 ≤ p0.

Therefore
q . p.

Corollary 3.5. Let A be a unital simple AH-algebra with stable rank one and real rank zero.
Suppose that kerρA is finite. Then A has tracial rank zero and K0(A) is weakly unperforated.
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4 Concluding remarks

Remark 4.1. Theorem 2.3 shows that that Toms’ example (as in [9]) could not occur under
the assumption that A has real rank zero.

Remark 4.2. More can be said in Theorem 2.3. It is clear that that, in Theorem 2.3, it suffices
to assume that every An has the property that all projections in the matrix algebras of An are
unitarily equivalent to those constant projections. So it allows An to have non-zero K1-groups.

Let An = PnMr(n)(C(Xn))Pn, where Xn is a finite CW complex, r(n) ≥ 1 is an integer and
Pn ∈ Mr(n)(C(Xn)). Suppose that Yn is another finite CW complex with covering dimension
hd(Xn) which has the same homotopy type of that of Xn. Suppose that

lim inf
n→∞

( sup
x∈Xn

hd(Xn)

RankPn(x)
) = 0.

Suppose also that A = limn→∞An is a unital simple C∗-algebra with real rank zero. Then,
from the proof of 2.3, one can show that A has tracial rank zero and stable rank one. In other
words, if A is homotopically slow dimension growth and is of real rank zero and stable rank one,
then A is isomorphic to a unital simple AH-algebra with no dimension growth. One should note
that, as in [9], without the assumption of real rank zero, the Cuntz semigroup of A could be
very different from those of unital simple AH-algebras with slow dimension growth.

Remark 4.3. From the proof of 3.4, one sees that Theorem 3.4 holds if the assumption on
kerρA is replaced by the conclusion of 3.1, i.e., there is an integer K ≥ 1 such that for any pair
of projections p, q ∈ Mm(A) (for any integer m ≥ 1), Kτ(p) ≤ τ(q) for all τ ∈ T (A) implies
p . q.
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